Source code for cerebras.pytorch.optim.Adadelta

# Copyright 2016-2023 Cerebras Systems
# SPDX-License-Identifier: BSD-3-Clause

"""contains the Cerebras Adadelta implementation"""
from typing import Callable

import torch

import cerebras.pytorch as cstorch

from .optimizer import Optimizer


[docs]class Adadelta(Optimizer): """ Adadelta optimizer implemented to perform the required pre-initialization of the optimizer state. """ def __init__( self, params, lr=1.0, rho=0.9, eps=1e-6, weight_decay=0, maximize: bool = False, ): if lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= rho <= 1.0: raise ValueError("Invalid rho value: {}".format(rho)) if eps < 0.0: raise ValueError("Invalid epsilon value: {}".format(eps)) if weight_decay < 0.0: raise ValueError( "Invalid weight_decay value: {}".format(weight_decay) ) defaults = dict( lr=lr, rho=rho, eps=eps, weight_decay=weight_decay, maximize=maximize, ) super().__init__(params, defaults)
[docs] def preinitialize(self): """ Allocates tensors for the optimizer state to allow direct compilation of the model before the first step. """ for group in self.param_groups: for p in group['params']: self.state[p]["square_avg"] = cstorch.zeros_like(p) self.state[p]["acc_delta"] = cstorch.zeros_like(p)
@torch.no_grad() def step(self, closure: Callable = None): """Performs a single optimization step. Args: closure : A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: lr = group["lr"] weight_decay = group["weight_decay"] rho = group['rho'] eps = group["eps"] maximize = group["maximize"] for p in group["params"]: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise RuntimeError( "Adadelta does not support sparse gradients." ) state = self.state[p] square_avg = state["square_avg"] acc_delta = state["acc_delta"] grad = grad if not maximize else -grad grad = grad + p * weight_decay square_avg.mul_(rho).addcmul_(grad, grad, value=1 - rho) std = square_avg.add(eps).sqrt_() delta = acc_delta.add(eps).sqrt_().div_(std).mul_(grad) acc_delta.mul_(rho).addcmul_(delta, delta, value=1 - rho) p.add_(-lr * delta) return loss