# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import Tuple
from cerebras.modelzoo.tools.checkpoint_converters.base_converter import (
BaseCheckpointConverter_CS_CS,
BaseCheckpointConverter_HF_CS,
BaseConfigConverter,
BaseConfigConverter_CS_CS,
BaseConfigConverter_HF_CS,
ConfigConversionError,
ConversionRule,
EquivalentSubkey,
FormatIndices,
FormatVersions,
)
from cerebras.modelzoo.tools.checkpoint_converters.helper import (
Build_HF_CS_Converter_WithOptionalModel,
convert_use_rms_layer_norm_helper,
)
from cerebras.modelzoo.tools.checkpoint_converters.mup import (
ConfigConverter_T5_sP_muP,
Converter_T5_sP_muP,
)
[docs]class Converter_T5_CS16_CS17(BaseCheckpointConverter_CS_CS):
def __init__(self):
super().__init__()
self.rules = [
ConversionRule(
[
r"(?:encoder|decoder)_",
EquivalentSubkey(
"token_embedding", "embeddings.word_embeddings"
),
r"\.weight",
],
action=self.replaceKey,
),
ConversionRule(
[
r"(?:encoder|decoder)\.embed_tokens\.weight",
],
exists="left",
),
ConversionRule(
[
r"(?:encoder|decoder)",
EquivalentSubkey(
".absolute_position_embedding",
"_embeddings.position_embeddings",
),
# Fixed position embeddings don't have a .weight suffix while learned absolute
# does
r"(?:\.weight|)",
],
action=self.replaceKey,
),
ConversionRule(
[
r"(?:encoder|decoder)\.",
EquivalentSubkey("block", "layers"),
r"\.\d+\.",
EquivalentSubkey("layer.0.SelfAttention", "self_attn"),
r"\.",
EquivalentSubkey("q", "proj_q_dense_layer"),
r"\.(?:weight|bias)",
],
action=self.replaceKey,
),
ConversionRule(
[
r"(?:encoder|decoder)\.",
EquivalentSubkey("block", "layers"),
r"\.\d+\.",
EquivalentSubkey("layer.0.SelfAttention", "self_attn"),
r"\.",
EquivalentSubkey("k", "proj_k_dense_layer"),
r"\.(?:weight|bias)",
],
action=self.replaceKey,
),
ConversionRule(
[
r"(?:encoder|decoder)\.",
EquivalentSubkey("block", "layers"),
r"\.\d+\.",
EquivalentSubkey("layer.0.SelfAttention", "self_attn"),
r"\.",
EquivalentSubkey("v", "proj_v_dense_layer"),
r"\.(?:weight|bias)",
],
action=self.replaceKey,
),
ConversionRule(
[
r"(?:encoder|decoder)\.",
EquivalentSubkey("block", "layers"),
r"\.\d+\.",
EquivalentSubkey("layer.0.SelfAttention", "self_attn"),
r"\.",
EquivalentSubkey("o", "proj_output_dense_layer"),
r"\.(?:weight|bias)",
],
action=self.replaceKey,
),
ConversionRule(
[
r"(?:encoder|decoder)\.",
EquivalentSubkey("block", "layers"),
r"\.\d+\.",
EquivalentSubkey("layer.0.layer_norm", "norm1"),
r"\.(?:weight|bias)",
],
action=self.replaceKey,
),
ConversionRule(
[
r"(?:encoder|decoder)\.",
EquivalentSubkey("block", "layers"),
r"\.\d+\.",
EquivalentSubkey("layer.1.layer_norm", "norm2"),
r"\.(?:weight|bias)",
],
action=self.replaceKey,
),
ConversionRule(
[
r"(?:encoder|decoder)\.",
EquivalentSubkey("block", "layers"),
r"\.\d+\.",
EquivalentSubkey("layer.2.layer_norm", "norm3"),
r"\.(?:weight|bias)",
],
action=self.replaceKey,
),
ConversionRule(
[
r"decoder\.",
EquivalentSubkey("block", "layers"),
r"\.\d+\.",
EquivalentSubkey(
"layer.1.EncDecAttention", "multihead_attn"
),
r"\.",
EquivalentSubkey("q", "proj_q_dense_layer"),
r"\.(?:weight|bias)",
],
action=self.replaceKey,
),
ConversionRule(
[
r"decoder\.",
EquivalentSubkey("block", "layers"),
r"\.\d+\.",
EquivalentSubkey(
"layer.1.EncDecAttention", "multihead_attn"
),
r"\.",
EquivalentSubkey("k", "proj_k_dense_layer"),
r"\.(?:weight|bias)",
],
action=self.replaceKey,
),
ConversionRule(
[
r"decoder\.",
EquivalentSubkey("block", "layers"),
r"\.\d+\.",
EquivalentSubkey(
"layer.1.EncDecAttention", "multihead_attn"
),
r"\.",
EquivalentSubkey("v", "proj_v_dense_layer"),
r"\.(?:weight|bias)",
],
action=self.replaceKey,
),
ConversionRule(
[
r"decoder\.",
EquivalentSubkey("block", "layers"),
r"\.\d+\.",
EquivalentSubkey(
"layer.1.EncDecAttention", "multihead_attn"
),
r"\.",
EquivalentSubkey("o", "proj_output_dense_layer"),
r"\.(?:weight|bias)",
],
action=self.replaceKey,
),
ConversionRule(
[
# pylint: disable=line-too-long
r"(?:encoder|decoder)\.block\.\d+\.layer\.0\.SelfAttention\.relative_attention_bias\.(?:weight|bias)"
],
exists="left",
action=self.convert_relative_attention_bias_cs16_to_cs17,
),
ConversionRule(
[
# pylint: disable=line-too-long
r"relative_position_(?:encoder|decoder)\.relative_attention_bias\.(?:weight|bias)"
],
exists="right",
action=self.convert_relative_attention_bias_cs17_to_cs16,
),
ConversionRule(
[
r"(?:encoder|decoder)\.",
EquivalentSubkey("block", "layers"),
r"\.\d+\.",
EquivalentSubkey(
"layer.1.DenseReluDense.wi", "ffn.ffn.0.linear_layer"
),
r"\.(?:weight|bias)",
],
action=self.convert_dense_layer,
),
ConversionRule(
[
r"(?:encoder|decoder)\.",
EquivalentSubkey("block", "layers"),
r"\.\d+\.",
EquivalentSubkey(
"layer.1.DenseReluDense.wi_0",
"ffn.ffn.0.linear_layer_for_glu",
),
r"\.(?:weight|bias)",
],
action=self.convert_dense_layer,
),
ConversionRule(
[
r"(?:encoder|decoder)\.",
EquivalentSubkey("block", "layers"),
r"\.\d+\.",
EquivalentSubkey(
"layer.1.DenseReluDense.wi_1", "ffn.ffn.0.linear_layer"
),
r"\.(?:weight|bias)",
],
action=self.convert_dense_layer,
),
ConversionRule(
[
r"(?:encoder|decoder)\.",
EquivalentSubkey("block", "layers"),
r"\.\d+\.",
EquivalentSubkey(
"layer.1.DenseReluDense.wo", "ffn.ffn.1.linear_layer"
),
r"\.(?:weight|bias)",
],
action=self.convert_dense_layer,
),
ConversionRule(
[
r"(?:encoder|decoder)\.",
EquivalentSubkey("block", "layers"),
r"\.\d+\.",
EquivalentSubkey(
"layer.2.DenseReluDense.wi", "ffn.ffn.0.linear_layer"
),
r"\.(?:weight|bias)",
],
action=self.replaceKey,
),
ConversionRule(
[
r"(?:encoder|decoder)\.",
EquivalentSubkey("block", "layers"),
r"\.\d+\.",
EquivalentSubkey(
"layer.2.DenseReluDense.wi_0",
"ffn.ffn.0.linear_layer_for_glu",
),
r"\.(?:weight|bias)",
],
action=self.convert_dense_layer,
),
ConversionRule(
[
r"(?:encoder|decoder)\.",
EquivalentSubkey("block", "layers"),
r"\.\d+\.",
EquivalentSubkey(
"layer.2.DenseReluDense.wi_1", "ffn.ffn.0.linear_layer"
),
r"\.(?:weight|bias)",
],
action=self.convert_dense_layer,
),
ConversionRule(
[
r"(?:encoder|decoder)\.",
EquivalentSubkey("block", "layers"),
r"\.\d+\.",
EquivalentSubkey(
"layer.2.DenseReluDense.wo", "ffn.ffn.1.linear_layer"
),
r"\.(?:weight|bias)",
],
action=self.replaceKey,
),
ConversionRule(
[
r"(?:encoder|decoder)\.",
EquivalentSubkey("final_layer_norm", "norm"),
r"\.(?:weight|bias)",
],
action=self.replaceKey,
),
ConversionRule(
[r"lm_head\.(?:weight|bias)"],
action=self.replaceKey,
),
]
def convert_dense_layer(
self,
old_key,
new_key,
old_state_dict,
new_state_dict,
from_index,
action_fn_args,
):
if from_index == 0:
self.replaceKey(
old_key, new_key, old_state_dict, new_state_dict, from_index
)
else:
# When going from CS -> HF, we need to figure out if cross
# attention is enabled or not
old_key_split = old_key.split(".")
multihead_q_key = (
'.'.join(old_key_split[: old_key_split.index("ffn")])
+ ".multihead_attn.proj_q_dense_layer.weight"
)
cross_attention_enabled = multihead_q_key in old_state_dict
if cross_attention_enabled:
layer_names = new_key.split(".")
layer_names[layer_names.index("layer") + 1] = "2"
new_key = '.'.join(layer_names)
# The ".linear_layer" needs to be mapped differently if we are using
# a gated attention:
is_gated_act = (
action_fn_args["configs"][0]
.get("feed_forward_proj", "relu")
.startswith("gated-")
)
if is_gated_act:
wi_position = new_key.find(".wi.")
if wi_position != -1:
new_key = (
new_key[:wi_position]
+ ".wi_1."
+ new_key[wi_position + len(".wi.") :]
)
new_state_dict[new_key] = old_state_dict[old_key]
def convert_relative_attention_bias_cs16_to_cs17(
self,
old_key,
new_key,
old_state_dict,
new_state_dict,
from_index,
action_fn_args,
):
assert (
from_index == 0
), "Shouldn't have matched the following key: {}".format(old_key)
if old_key.find(".block.0.") != -1:
module = old_key[: old_key.find(".")] # encoder or decoder
layer_type = old_key[old_key.rfind(".") + 1 :] # bias or weight
key_prefix = new_key[: new_key.find(module)]
new_key = (
"{}relative_position_{}.relative_attention_bias.{}".format(
key_prefix, module, layer_type
)
)
new_state_dict[new_key] = old_state_dict[old_key]
def convert_relative_attention_bias_cs17_to_cs16(
self,
old_key,
new_key,
old_state_dict,
new_state_dict,
from_index,
action_fn_args,
):
assert (
from_index == 1
), "Shouldn't have matched the following key: {}".format(old_key)
# CS 16 stored relative attention bias on every single transformer block event though they
# weren't used. Extract the text after 'relative_position_' and before the following '.'
# into module.
relative_position_start = old_key.find("relative_position_")
assert relative_position_start != -1, "Invalid key: {}".format(old_key)
module = old_key[
relative_position_start
+ len("relative_position_") : old_key.find(
".", relative_position_start
)
]
layer_type = old_key[old_key.rfind(".") + 1 :]
num_layers = 0
while (
"{}encoder.layers.{}.self_attn.proj_q_dense_layer.weight".format(
old_key[:relative_position_start], num_layers
)
in old_state_dict
):
num_layers += 1
for idx in range(num_layers):
new_key = "{}.block.{}.layer.0.SelfAttention.relative_attention_bias.{}".format(
module, idx, layer_type
)
new_state_dict[new_key] = old_state_dict[old_key]
def pre_checkpoint_convert(
self,
input_checkpoint,
output_checkpoint,
configs: Tuple[dict, dict],
converter_indices: FormatIndices,
):
# Don't copy non model keys like optimizer state:
logging.warning(
"The T5 model changed significantly between {} and {}. As a result, the"
" optimizer state won't be included in the converted checkpoint.".format(
*self.formats()
)
)
output_checkpoint["model"] = {}
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("cs-1.6"), FormatVersions("cs-1.7"))
@classmethod
def converter_note(cls) -> str:
return "T5ForConditionalGeneration class"
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_T5_CS16_CS17
[docs]class Converter_T5_CS17_CS18(BaseCheckpointConverter_CS_CS):
def __init__(self):
super().__init__()
self.rules = [
# Catch checkpoints from Pytorch 2.0 API
ConversionRule(
[r"(?!model\.).*"],
action=self.replaceKey,
),
# Catch checkpoints from 1.7/1.8
ConversionRule(
[EquivalentSubkey("", "model."), ".*"],
action=self.replaceKey,
),
]
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("cs-1.7"), FormatVersions("cs-1.8"))
@classmethod
def converter_note(cls) -> str:
return "T5ForConditionalGeneration class"
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_T5_CS17_CS18
[docs]class Converter_T5_CS16_CS18(BaseCheckpointConverter_CS_CS):
def __init__(self):
super().__init__()
self.rules = [
# Catch checkpoints from Pytorch 2.0 API
ConversionRule(
[
Converter_T5_CS16_CS17(),
],
action=None,
),
# Catch checkpoints from 1.7/1.8
ConversionRule(
[EquivalentSubkey("", "model."), Converter_T5_CS16_CS17()],
action=None,
),
]
def pre_checkpoint_convert(
self,
input_checkpoint,
output_checkpoint,
configs: Tuple[dict, dict],
converter_indices: FormatIndices,
):
# Don't copy non model keys like optimizer state:
logging.warning(
"The T5 model changed significantly between {} and {}. As a result, the"
" optimizer state won't be included in the converted checkpoint.".format(
*self.formats()
)
)
output_checkpoint["model"] = {}
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("cs-1.6"), FormatVersions("cs-1.8"))
@classmethod
def converter_note(cls) -> str:
return "T5ForConditionalGeneration class"
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_T5_CS16_CS18
[docs]class ConfigConverter_T5_CS16_CS17(BaseConfigConverter_CS_CS):
def __init__(self):
super().__init__()
# Config didn't change between 1.6 and 1.7. Copy all keys.
self.rules = [
ConversionRule([".*"], action=BaseConfigConverter.replaceKey),
]
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("cs-1.6"), FormatVersions("cs-1.7"))
[docs]class ConfigConverter_T5_CS17_CS18(BaseConfigConverter_CS_CS):
def __init__(self):
super().__init__()
# Only thing that changed between 1.7 and 1.8 is flipped
# use_pre_encoder_decoder_layer_norm
self.rules = [
ConversionRule(
["use_pre_encoder_decoder_layer_norm"],
action=self.flip_use_pre_encoder_decoder_layer_norm,
),
ConversionRule([".*"], action=BaseConfigConverter.replaceKey),
]
@classmethod
def flip_use_pre_encoder_decoder_layer_norm(
cls,
old_key,
new_key,
old_state_dict,
new_state_dict,
from_index,
action_fn_args,
):
new_state_dict[new_key] = not old_state_dict[old_key]
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("cs-1.7"), FormatVersions("cs-1.8"))
[docs]class ConfigConverter_T5_CS16_CS18(
ConfigConverter_T5_CS16_CS17,
):
def __init__(self):
super().__init__()
self.rules = [
ConversionRule(
["use_pre_encoder_decoder_layer_norm"],
action=ConfigConverter_T5_CS17_CS18.flip_use_pre_encoder_decoder_layer_norm,
),
*self.rules,
]
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("cs-1.6"), FormatVersions("cs-1.8"))
### T5ForConditional Generation HF <-> CS1.7
[docs]class Converter_T5_HF_CS17(
Converter_T5_CS16_CS17, BaseCheckpointConverter_HF_CS
):
def __init__(self):
super().__init__()
self.rules = [
ConversionRule(
[
r"(?:encoder|decoder)",
EquivalentSubkey(
".embed_tokens", "_embeddings.word_embeddings"
),
r"\.weight",
],
action=self.convert_embeddings,
),
ConversionRule([r"shared\.weight"], exists="left"),
ConversionRule(
[
# pylint: disable=line-too-long
r"relative_position_(?:encoder|decoder)\.relative_attention_bias\.(?:weight|bias)"
],
exists="right",
action=self.convert_relative_attention_bias_cs17_to_hf,
),
ConversionRule(
[
# pylint: disable=line-too-long
r"decoder\.block\.\d+\.layer\.1\.EncDecAttention\.relative_attention_bias\.(?:weight|bias)"
],
exists="left",
action=None,
),
*self.rules,
]
def convert_embeddings(
self,
old_key,
new_key,
old_state_dict,
new_state_dict,
from_index,
action_fn_args,
):
self.replaceKey(
old_key, new_key, old_state_dict, new_state_dict, from_index
)
if from_index == 1:
# HF stores a copy of the word embeddings at the top level in a variable named 'shared'
self.replaceKey(
old_key,
"shared.weight",
old_state_dict,
new_state_dict,
from_index,
)
def convert_relative_attention_bias_cs17_to_hf(
self,
old_key,
new_key,
old_state_dict,
new_state_dict,
from_index,
action_fn_args,
):
assert (
from_index == 1
), "Shouldn't have matched the following key: {}".format(old_key)
# CS 16 stored relative attention bias on every single transformer block event though they
# weren't used
relative_position_start = old_key.find("relative_position_")
assert relative_position_start != -1, "Invalid key: {}".format(old_key)
module = old_key[
relative_position_start
+ len("relative_position_") : old_key.find(
".", relative_position_start
)
]
layer_type = old_key[old_key.rfind(".") + 1 :]
new_key = "{}.block.0.layer.0.SelfAttention.relative_attention_bias.{}".format(
module, layer_type
)
new_state_dict[new_key] = old_state_dict[old_key]
def pre_model_convert(
self,
old_state_dict,
new_state_dict,
configs,
converter_indices,
drop_unmatched_keys,
):
if converter_indices.direction == 1:
assert (
"encoder_embeddings.position_embeddings.weight"
not in old_state_dict
and "decoder_embeddings.position_embeddings.weight"
not in old_state_dict
), (
"Cannot convert to HF because it doesn't support "
"position_embedding_type=\"learned_absolute\""
)
assert (
"encoder_embeddings.position_embeddings" not in old_state_dict
and "decoder_embeddings.position_embeddings"
not in old_state_dict
), "Cannot convert to HF because it doesn't support position_embedding_type=\"fixed\""
assert (
"relative_position_encoder.relative_attention_bias.weight"
in old_state_dict
and "relative_position_decoder.relative_attention_bias.weight"
in old_state_dict
), "Cannot convert to HF because it doesn't support position_embedding_type=None"
if (
configs[1]["model"]["share_embedding_weights"]
and configs[1]["model"]["share_encoder_decoder_embedding"]
and old_state_dict.get(
"encoder_embeddings.word_embeddings.weight", 0
)
is None
):
old_state_dict["encoder_embeddings.word_embeddings.weight"] = (
old_state_dict["lm_head.weight"]
)
if (
configs[1]["model"]["share_embedding_weights"]
and configs[1]["model"]["share_encoder_decoder_embedding"]
and old_state_dict.get(
"decoder_embeddings.word_embeddings.weight", 0
)
is None
):
old_state_dict["decoder_embeddings.word_embeddings.weight"] = (
old_state_dict["lm_head.weight"]
)
def pre_checkpoint_convert(
self,
*args,
):
return BaseCheckpointConverter_HF_CS.pre_checkpoint_convert(
self,
*args,
)
def extract_model_dict(self, *args):
return BaseCheckpointConverter_HF_CS.extract_model_dict(self, *args)
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("hf"), FormatVersions("cs-1.7"))
@classmethod
def converter_note(cls) -> str:
return "{} <-> {} T5ForConditionalGeneration".format(
cls.formats()[0], cls.formats()[1]
)
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_T5_HF_CS17
[docs]class Converter_T5_HF_CS18(BaseCheckpointConverter_HF_CS):
def __init__(self):
super().__init__()
self.rules = [
# Catch checkpoints from Pytorch 2.0 API
ConversionRule(
[
Converter_T5_HF_CS17(),
],
action=None,
),
# Catch checkpoints from 1.7/1.8
ConversionRule(
[EquivalentSubkey("", "model."), Converter_T5_HF_CS17()],
action=None,
),
]
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("hf"), FormatVersions("cs-1.8"))
@classmethod
def converter_note(cls) -> str:
return "{} <-> {} T5ForConditionalGeneration".format(
cls.formats()[0], cls.formats()[1]
)
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_T5_HF_CS18
[docs]class ConfigConverter_T5_HF_CS17(BaseConfigConverter_HF_CS):
def __init__(self):
super().__init__()
self.rules = [
ConversionRule(
["model_type"],
action=BaseConfigConverter.assert_factory_fn(0, "t5"),
),
# Embedding
ConversionRule(
[EquivalentSubkey("vocab_size", "src_vocab_size")],
action=self.replaceKey,
),
ConversionRule(["d_model"], action=self.replaceKey),
ConversionRule(["d_kv"], action=self.replaceKey),
ConversionRule(["d_ff"], action=self.replaceKey),
ConversionRule(
[EquivalentSubkey("num_layers", "encoder_num_hidden_layers")],
action=self.replaceKey,
),
ConversionRule(
[
EquivalentSubkey(
"num_decoder_layers", "decoder_num_hidden_layers"
)
],
action=self.replaceKey,
),
ConversionRule(["num_heads"], action=self.replaceKey),
ConversionRule(
["use_projection_bias_in_attention"],
action=BaseConfigConverter.assert_factory_fn(1, False),
),
ConversionRule(
["relative_attention_num_buckets"],
action=self.replaceKey,
),
ConversionRule(
[
EquivalentSubkey(
"tie_word_embeddings", "share_embedding_weights"
)
],
action=self.replaceKey,
),
ConversionRule(
["is_encoder_decoder"],
action=BaseConfigConverter.assert_factory_fn(0, True),
),
ConversionRule(
["relative_attention_max_distance"],
action=BaseConfigConverter.assert_factory_fn(0, 128),
),
ConversionRule(["dropout_rate"], action=self.replaceKey),
ConversionRule(
["layer_norm_epsilon"],
action=self.replaceKey,
),
ConversionRule(
[EquivalentSubkey("feed_forward_proj", "encoder_nonlinearity")],
action=self.convert_nonlinearity,
),
ConversionRule(
["decoder_nonlinearity"],
action=self.assert_decoder_nonlinearity,
),
ConversionRule(
["position_embedding_type"],
exists="right",
action=BaseConfigConverter.assert_factory_fn(1, "relative"),
),
ConversionRule(
["(?:src|tgt)_max_position_embeddings"],
exists="right",
action=None,
),
ConversionRule(
["use_dropout_outside_residual_path"],
exists="right",
action=BaseConfigConverter.assert_factory_fn(1, True),
),
ConversionRule(
["share_encoder_decoder_embedding"],
exists="right",
action=BaseConfigConverter.assert_factory_fn(1, True),
),
ConversionRule(
["use_pre_encoder_decoder_dropout"],
exists="right",
action=BaseConfigConverter.assert_factory_fn(1, False),
),
# use_pre_encoder_decoder_layer_norm=False in CS <= 1.7. This flag
# was flipped in 1.8
ConversionRule(
["use_pre_encoder_decoder_layer_norm"],
exists="right",
action=BaseConfigConverter.assert_factory_fn(1, False),
),
ConversionRule(
["use_ffn_bias"],
exists="right",
action=BaseConfigConverter.assert_factory_fn(1, False),
),
ConversionRule(
["use_transformer_initialization"],
exists="right",
action=BaseConfigConverter.assert_factory_fn(1, False),
),
]
self.pre_convert_defaults[0].update(
{
"vocab_size": 32128,
"d_model": 512,
"d_kv": 64,
"d_ff": 2048,
"num_layers": 6,
"num_heads": 8,
"relative_attention_num_buckets": 32,
"relative_attention_max_distance": 128,
"dropout_rate": 0.1,
"layer_norm_epsilon": 1e-6,
"initializer_factor": 1,
"feed_forward_proj": "relu",
"tie_word_embeddings": True,
}
)
self.pre_convert_defaults[1].update(
{
"use_projection_bias_in_attention": False,
"relative_attention_num_buckets": 32,
"share_embedding_weights": True,
"use_t5_layer_norm": True,
"layer_norm_epsilon": 1.0e-5,
"position_embedding_type": "relative",
"use_dropout_outside_residual_path": True,
"share_encoder_decoder_embedding": True,
"use_pre_encoder_decoder_dropout": False,
"use_pre_encoder_decoder_layer_norm": False,
"use_ffn_bias": False,
"use_transformer_initialization": False,
},
)
self.post_convert_defaults[0].update({"model_type": "t5"})
self.post_convert_defaults[1].update(
{
"src_max_position_embeddings": 512,
"tgt_max_position_embeddings": 512,
},
)
def convert_nonlinearity(
self,
old_key,
new_key,
old_state_dict,
new_state_dict,
from_index,
action_fn_args,
):
activation = old_state_dict[old_key]
if activation.startswith("gated-"):
activation = activation[6:]
if from_index == 0 and old_state_dict[old_key].startswith("gated-"):
gated_hf2cs = {"silu": "swiglu", "relu": "reglu", "gelu": "geglu"}
assert activation in gated_hf2cs
activation = gated_hf2cs[activation]
elif from_index == 1 and activation.endswith("glu"):
gated_cs2hf = {
"swiglu": "gated-silu",
"reglu": "gated-relu",
"geglu": "gated-gelu",
}
assert activation in gated_cs2hf
activation = gated_cs2hf[activation]
new_state_dict[new_key] = activation
if from_index == 0:
new_state_dict["decoder_nonlinearity"] = activation
def assert_decoder_nonlinearity(
self,
old_key,
new_key,
old_state_dict,
new_state_dict,
from_index,
action_fn_args,
):
if old_state_dict["encoder_nonlinearity"] != old_state_dict[old_key]:
raise ConfigConversionError(
f"Encoder & Decoder nonlinearities must be the same in HF model. "
f"Got: {old_state_dict['encoder_nonlinearity']} vs {old_state_dict[old_key]}"
)
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("hf"), FormatVersions("cs-1.7"))
def pre_config_convert(
self,
config,
converter_indices,
):
config = super().pre_config_convert(config, converter_indices)
if converter_indices.direction == 1:
if "tgt_vocab_size" in config:
if (
config["tgt_vocab_size"] is not None
and config["tgt_vocab_size"] != config["src_vocab_size"]
):
raise ConfigConversionError(
"HF implementation doesn't allow tgt_vocab_size != src_vocab_size"
)
if "relu_dropout_rate" in config:
if (
config["relu_dropout_rate"] is not None
and config["relu_dropout_rate"] != config["dropout_rate"]
):
raise ConfigConversionError(
"HF implementation doesn't allow relu_dropout_rate != dropout_rate"
)
return config
[docs]class ConfigConverter_T5_HF_CS18(ConfigConverter_T5_HF_CS17):
def __init__(self):
super().__init__()
self.rules = [
# CS 1.8 flipped the use_pre_encoder_decoder_layer_norm param
ConversionRule(
["use_pre_encoder_decoder_layer_norm"],
exists="right",
action=BaseConfigConverter.assert_factory_fn(1, True),
),
*self.rules,
]
self.pre_convert_defaults[1][
"use_pre_encoder_decoder_layer_norm"
] = True
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("hf"), FormatVersions("cs-1.8"))
[docs]class Converter_T5_CS18_CS20(BaseCheckpointConverter_CS_CS):
def __init__(self):
super().__init__()
# Model didn't change between 1.8/1.9 and 2.0. Copy all keys.
self.rules = [
# Don't copy encoder/decoder word embeddings or lm_head due to tying
# These props will be handled in the `post_model_convert`
ConversionRule(
[
"(?:model.|)",
"lm_head",
"\.weight",
],
action=None,
),
ConversionRule(
[
"(?:model.|)",
"encoder_embeddings.word_embeddings",
"\.weight",
],
action=None,
),
ConversionRule(
[
"(?:model.|)",
"decoder_embeddings.word_embeddings",
"\.weight",
],
action=None,
),
ConversionRule([".*"], action=self.replaceKey),
]
def post_model_convert(
self,
old_state_dict,
new_state_dict,
configs,
converter_indices,
drop_unmatched_keys,
key_prefix="",
):
cs_config = configs[1]
if "decoder_embeddings.word_embeddings.weight" in old_state_dict:
model_prefix = ""
elif (
"model.decoder_embeddings.word_embeddings.weight" in old_state_dict
):
model_prefix = "model."
else:
raise KeyError(
"Unable to find decoder_embeddings.word_embeddings.weight in checkpoint"
)
lm_head = old_state_dict[f"{model_prefix}lm_head.weight"]
decoder_embed = old_state_dict[
f"{model_prefix}decoder_embeddings.word_embeddings.weight"
]
encoder_embed = old_state_dict[
f"{model_prefix}encoder_embeddings.word_embeddings.weight"
]
if cs_config["model"].get(
"share_encoder_decoder_embedding", True
) and cs_config["model"].get("share_embedding_weights", True):
not_none = list(
filter(
lambda e: e is not None,
[lm_head, decoder_embed, encoder_embed],
)
)
if not all(not_none[0].equal(e) for e in not_none):
logging.warning(
"When encoder-decoder embeddings & lm_head are tied, all "
"tensors should be the same. However, there is a conflict "
"between some of the tensors. As a result, the output "
"checkpoint may be inconsistent."
)
if len(not_none) > 0:
lm_head = not_none[0]
decoder_embed = not_none[0]
encoder_embed = not_none[0]
if cs_config["model"].get("share_embedding_weights", True):
if lm_head is None:
lm_head = decoder_embed
if decoder_embed is None:
decoder_embed = lm_head
if cs_config["model"].get("share_encoder_decoder_embedding", True):
if encoder_embed is None:
encoder_embed = decoder_embed
if decoder_embed is None:
decoder_embed = encoder_embed
new_state_dict[f"{model_prefix}lm_head.weight"] = lm_head
new_state_dict[
f"{model_prefix}decoder_embeddings.word_embeddings.weight"
] = decoder_embed
new_state_dict[
f"{model_prefix}encoder_embeddings.word_embeddings.weight"
] = encoder_embed
# Finalize checkpoint:
super().post_model_convert(
old_state_dict,
new_state_dict,
configs,
converter_indices,
drop_unmatched_keys,
key_prefix=key_prefix,
)
@classmethod
def converter_note(cls) -> str:
return "T5ForConditionalGeneration class"
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("cs-1.8", "cs-1.9"), FormatVersions("cs-2.0"))
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_T5_CS18_CS20
[docs]class ConfigConverter_T5_CS18_CS20(BaseConfigConverter_CS_CS):
def __init__(self):
super().__init__()
# Only difference between 1.8/1.9 and 2.0 is introduction of norm_type
self.rules = [
ConversionRule(
[EquivalentSubkey("use_t5_layer_norm", "norm_type")],
action=self.convert_use_t5_layer_norm,
),
ConversionRule([".*"], action=self.replaceKey),
]
def convert_use_t5_layer_norm(self, *args):
convert_use_rms_layer_norm_helper(self, *args)
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("cs-1.8", "cs-1.9"), FormatVersions("cs-2.0"))
[docs]class Converter_T5_HF_CS20(Converter_T5_HF_CS18):
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("hf"), FormatVersions("cs-2.0"))
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_T5_HF_CS20
[docs]class ConfigConverter_T5_HF_CS20(ConfigConverter_T5_HF_CS18):
def __init__(self):
super().__init__()
self.rules = [
ConversionRule(
["norm_type"],
action=BaseConfigConverter.assert_factory_fn(1, "rmsnorm"),
),
*self.rules,
]
del self.pre_convert_defaults[1]["use_t5_layer_norm"]
self.pre_convert_defaults[1]["norm_type"] = "rmsnorm"
self.post_convert_defaults[1]["norm_type"] = "rmsnorm"
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("hf"), FormatVersions("cs-2.0"))
###########################################################
# In CS 2.1, we refactored the embedding layer.
# CS 2.0 <> CS 2.1, and HF <> CS 2.1 converters:
###########################################################
[docs]class Converter_T5_CS20_CS21(BaseCheckpointConverter_CS_CS):
def __init__(self):
super().__init__()
self.rules = [
# Refactored embeddings:
ConversionRule(
[
"(?:model\.|)",
"(?:encoder|decoder)_embeddings\.",
EquivalentSubkey(
"position_embeddings.weight",
"position_embeddings.embed.weight",
),
],
action=self.replaceKey,
),
ConversionRule(
[
"(?:model\.|)",
"(?:encoder|decoder)_embeddings\.",
EquivalentSubkey(
"position_embeddings",
"position_embeddings.fpe",
),
],
action=self.replaceKey,
),
ConversionRule(
[
"(?:model\.|)",
EquivalentSubkey(
"relative_position_encoder",
"encoder_embeddings.position_embed_helper",
),
"\.relative_attention_bias",
"\.(?:weight|bias)",
],
action=self.replaceKey,
),
ConversionRule(
[
"(?:model\.|)",
EquivalentSubkey(
"relative_position_decoder",
"decoder_embeddings.position_embed_helper",
),
"\.relative_attention_bias",
"\.(?:weight|bias)",
],
action=self.replaceKey,
),
# T5 <= CS 2.0 didn't support ALIBI or RoPE
# Copy everything else
ConversionRule([".*"], action=self.replaceKey),
]
@classmethod
def converter_note(cls) -> str:
return "T5ForConditionalGeneration class"
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("cs-2.0"), FormatVersions("cs-2.1"))
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_T5_CS20_CS21
[docs]class ConfigConverter_T5_CS20_CS21(BaseConfigConverter_CS_CS):
def __init__(self):
super().__init__()
# No differences in config
self.rules = [
ConversionRule([".*"], action=self.replaceKey),
]
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("cs-2.0"), FormatVersions("cs-2.1"))
[docs]class ConfigConverter_T5_HF_CS21(ConfigConverter_T5_HF_CS20):
"CS 2.1 config is the same as CS 2.0"
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (
FormatVersions("hf"),
FormatVersions("cs-2.1", "cs-2.2"),
)
[docs]class Converter_T5_WithoutOptionalModel_HF_CS21(Converter_T5_HF_CS17):
def __init__(self):
super().__init__()
self.rules = [
ConversionRule(
[
"(?:encoder|decoder)\.block\.\d+\.layer\.0\.SelfAttention\.relative_attention_bias\.(?:weight|bias)"
],
exists="left",
action=self.convert_relative_attention_bias_hf_to_cs21,
),
ConversionRule(
[
"(?:encoder|decoder)_embeddings\.position_embed_helper\.relative_attention_bias\.(?:weight|bias)"
],
exists="right",
action=self.convert_relative_attention_bias_cs17_to_hf,
),
*self.rules,
]
def convert_relative_attention_bias_hf_to_cs21(
self,
old_key,
new_key,
old_state_dict,
new_state_dict,
from_index,
action_fn_args,
):
assert (
from_index == 0
), "Shouldn't have matched the following key: {}".format(old_key)
if old_key.find(".block.0.") != -1:
module = old_key[: old_key.find(".")] # encoder or decoder
layer_type = old_key[old_key.rfind(".") + 1 :] # bias or weight
key_prefix = new_key[: new_key.find(module)]
new_key = "{}{}_embeddings.position_embed_helper.relative_attention_bias.{}".format(
key_prefix, module, layer_type
)
new_state_dict[new_key] = old_state_dict[old_key]
def convert_relative_attention_bias_cs17_to_hf(
self,
old_key,
new_key,
old_state_dict,
new_state_dict,
from_index,
action_fn_args,
):
assert (
from_index == 1
), "Shouldn't have matched the following key: {}".format(old_key)
# HF stored relative attention bias on every single transformer block event though they weren't used
if old_key.find("encoder_embeddings.position_embed_helper.") != -1:
module = "encoder"
elif old_key.find("decoder_embeddings.position_embed_helper.") != -1:
module = "decoder"
else:
assert False, "Invalid key: {}".format(old_key)
layer_type = old_key[old_key.rfind(".") + 1 :]
new_key = "{}.block.0.layer.0.SelfAttention.relative_attention_bias.{}".format(
module, layer_type
)
new_state_dict[new_key] = old_state_dict[old_key]
# CS 17 converter has custom pre_model_convert logic which CS21 doesn't need
def pre_model_convert(
self,
old_state_dict,
new_state_dict,
configs,
converter_indices,
drop_unmatched_keys,
):
pass
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (
FormatVersions("hf"),
FormatVersions("cs-2.1", "cs-2.2"),
)
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_T5_HF_CS21
[docs]class ConfigConverter_T5_HF_CS23(ConfigConverter_T5_HF_CS21):
def supports_mup_conversion(self):
return True
def get_mup_converter(self):
return ConfigConverter_T5_sP_muP
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (
FormatVersions("hf"),
FormatVersions("cs-2.3"),
)
[docs]class Converter_T5_WithoutOptionalModel_HF_CS23(
Converter_T5_WithoutOptionalModel_HF_CS21
):
def supports_mup_conversion(self):
return True
def get_mup_converter(self):
return Converter_T5_sP_muP
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (
FormatVersions("hf"),
FormatVersions("cs-2.3"),
)
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_T5_HF_CS23
Converter_T5_HF_CS21 = Build_HF_CS_Converter_WithOptionalModel(
"Converter_T5_HF_CS21",
Converter_T5_WithoutOptionalModel_HF_CS21,
derived_class=Converter_T5_WithoutOptionalModel_HF_CS21,
)
Converter_T5_HF_CS23 = Build_HF_CS_Converter_WithOptionalModel(
"Converter_T5_HF_CS23",
Converter_T5_WithoutOptionalModel_HF_CS23,
derived_class=Converter_T5_WithoutOptionalModel_HF_CS23,
)