# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Script that normalizes text
"""
import argparse
import io
import json
from itertools import repeat
from math import ceil
from multiprocessing import Pool, cpu_count
from os import listdir, makedirs, path
import ftfy
import jsonlines
import zstandard
from tqdm import tqdm
[docs]def parse_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"-d",
"--data_dir",
type=str,
required=True,
help="Path to directory containing data files.",
)
parser.add_argument(
"-t",
"--target_dir",
type=str,
help="Path to directory where normlaized data files will be stored.",
)
parser.add_argument(
"--zst",
action="store_true",
help="files with zst compression",
)
parser.add_argument(
"--idx",
type=int,
default=-1,
help="index for spltting files in a directory for multiple parallel runs",
)
return parser.parse_args()
[docs]def recreate_dataset(params):
files, args, process_no = params
pbar = tqdm(
desc=f"Parsed 0 input files. Files written ",
disable=False,
)
for _file in files:
file_path = path.join(args.data_dir, _file)
target_path = path.join(args.target_dir, _file)
if args.zst:
with open(file_path, 'rb') as fh:
dcctx = zstandard.ZstdDecompressor()
reader = io.BufferedReader(dcctx.stream_reader(fh))
rdr = jsonlines.Reader(reader)
with open(target_path, "wb") as f:
cctx = zstandard.ZstdCompressor()
wrt = cctx.stream_writer(f)
writer = io.BufferedWriter(wrt)
for ob in rdr:
doc = ob["text"]
doc = ftfy.fix_text(doc, normalization="NFC")
record = {
"text": doc,
"pred_label": ob["pred_label"],
"pred_label_prob": ob["pred_label_prob"],
"wiki_prob": ob["wiki_prob"],
"source": ob["source"],
}
s = json.dumps(record) + "\n"
writer.write(s.encode("utf-8"))
writer.flush()
wrt.flush(zstandard.FLUSH_FRAME)
else:
with jsonlines.open(file_path) as rdr:
with open(target_path, "w") as f:
for ob in rdr:
doc = ob["text"]
doc = ftfy.fix_text(doc, normalization="NFC")
record = {"text": doc, "meta": ob["meta"]}
f.write(json.dumps(record) + "\n")
return True
[docs]def normalize_text(args):
makedirs(args.target_dir, exist_ok=True)
files = sorted(listdir(args.data_dir))
files = list(filter(lambda file_: '.jsonl' in file_, files))
if args.idx != -1:
files = files[args.idx * 64 : (args.idx + 1) * 64]
n_proc = cpu_count()
n_chunks = ceil(len(files) / n_proc)
remain = len(files) % n_proc
if n_chunks == 1 and remain:
n_proc = remain
print(f"resetting to {n_proc} for number of processes")
files = [files[i : i + n_chunks] for i in range(0, len(files), n_chunks)]
with Pool(processes=n_proc) as pool:
pbar = tqdm(
pool.imap(
recreate_dataset,
zip(
files,
repeat(args),
range(len(files)),
),
),
total=len(files),
)
for test in pbar:
pbar.update()
if test:
continue
if __name__ == "__main__":
args = parse_args()
normalize_text(args)