Source code for cerebras.modelzoo.data.vision.diffusion.DiffusionImageNet1KProcessor

# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import torchvision
from torch.utils.data.dataloader import default_collate

import cerebras.pytorch.distributed as dist
from cerebras.modelzoo.common.registry import registry
from cerebras.modelzoo.data.vision.diffusion.DiffusionBaseProcessor import (
    DiffusionBaseProcessor,
)
from cerebras.modelzoo.data.vision.utils import create_worker_cache


# NOTE: Inorder to use this dataloader,
# model side changes as follows are needed
# 1. initializing VAEModel.
# 2. Using `vae_noise` to create latent from forward pass of VAEEncoder
[docs]@registry.register_datasetprocessor("DiffusionImageNet1KProcessor") class DiffusionImageNet1KProcessor(DiffusionBaseProcessor): def __init__(self, params): super().__init__(params) self.num_classes = 1000 def create_dataset(self, use_training_transforms=True, split="train"): if self.use_worker_cache and dist.is_streamer(): self.data_dir = create_worker_cache(self.data_dir) self.check_split_valid(split) transform, target_transform = self.process_transform() if not os.path.isfile(os.path.join(self.data_dir, "meta.bin")): raise RuntimeError( "The meta file meta.bin is not present in the root directory. " "Check data/vision/classification/data/README.md for " "more details on downloading the dataset." ) if not os.path.isdir(os.path.join(self.data_dir, split)): raise RuntimeError( f"No directory {split} under root dir. Refer to " "data/vision/classification/data/README.md on how to " "prepare the dataset." ) dataset = torchvision.datasets.ImageNet( root=self.data_dir, split=split, transform=transform, target_transform=target_transform, ) return dataset def _custom_collate_fn(self, batch): batch = default_collate(batch) input, label = batch data = self.noise_generator(*self.label_dropout(input, label)) return data def create_dataloader(self, dataset, is_training=False): dataloader = super().create_dataloader(dataset, is_training) self.latent_dist_fn = self._passthrough dataloader.collate_fn = self._custom_collate_fn return dataloader