Source code for cerebras.modelzoo.common.pytorch_utils

# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""General purpose Pytorch Utilities."""

import argparse
import logging
import os
import random
import re
import sys
import time
import traceback
from pathlib import Path
from typing import Any, Callable, Dict, Generator, List, Optional, Tuple, Union
from warnings import warn

import torch
import yaml
from jsonschema import validate
from packaging.version import parse

import cerebras.pytorch as cstorch
import cerebras.pytorch.distributed as dist
from cerebras.appliance.utils.file import create_symlink
from cerebras.pytorch.utils.call_once import call_once


[docs]def visit_structure( data_structure: Union[Any, list, tuple, dict], select_fn: Callable[[Any], bool], strict: bool = False, scope: Optional[List[str]] = None, ) -> Generator[Tuple[List[str], Any], None, None]: """Recursively traverse nested structure and return the items accepted by the selector. Args: data_structure: A nested data structure to traverse recursively. select_fn: A callable that returns true if the item passed should be selected. strict: Strictly checks that an item in the nested structure is either a list/dict/tuple or selected by the select_fn. Otherwise, raises an error. Defaults to False. scope: The current hierarchical scope of the data structure. Defaults to None. Yields: A tuples of (scope, item) for each item selected by the select_fn. """ scope = scope or [] if isinstance(data_structure, (list, tuple)): for i, v in enumerate(data_structure): yield from visit_structure(v, select_fn, strict, scope + [str(i)]) elif isinstance(data_structure, dict): for k, v in data_structure.items(): yield from visit_structure(v, select_fn, strict, scope + [str(k)]) elif select_fn(data_structure): yield scope, data_structure elif strict: raise ValueError(f"Unknown data structure: {data_structure}")
[docs]class BufferedShuffleDataset( torch.utils.data.IterableDataset ): # pylint:disable=abstract-method """Dataset shuffled from the original dataset. This class is useful to shuffle an existing instance of an IterableDataset. The buffer with `buffer_size` is filled with the items from the dataset first. Then, each item will be yielded from the buffer by reservoir sampling via iterator. `buffer_size` is required to be larger than 0. For `buffer_size == 1`, the dataset is not shuffled. In order to fully shuffle the whole dataset, `buffer_size` is required to be greater than or equal to the size of dataset. When it is used with :class:`~torch.utils.data.DataLoader`, each item in the dataset will be yielded from the :class:`~torch.utils.data.DataLoader` iterator. And, the method to set up a random seed is different based on :attr:`num_workers`. For single-process mode (:attr:`num_workers == 0`), the random seed is required to be set before the :class:`~torch.utils.data.DataLoader` in the main process. Arguments: dataset (IterableDataset): The original IterableDataset. buffer_size (int): The buffer size for shuffling. Example: For multi-process mode (:attr:`num_workers > 0`), the random seed is set by a callable function in each worker. >>> ds = BufferedShuffleDataset(dataset) >>> random.seed(...) >>> print(list(torch.utils.data.DataLoader(ds, num_workers=0))) >>> ds = BufferedShuffleDataset(dataset) >>> def init_fn(worker_id): ... random.seed(...) >>> print(list(torch.utils.data.DataLoader(ds, ..., num_workers=n, worker_init_fn=init_fn))) """ def __init__(self, dataset, buffer_size): super(BufferedShuffleDataset, self).__init__() assert buffer_size > 0, "buffer_size should be larger than 0" self.dataset = dataset self.buffer_size = buffer_size def __iter__(self): buf = [] for x in self.dataset: if len(buf) == self.buffer_size: idx = random.randint(0, self.buffer_size - 1) yield buf[idx] buf[idx] = x else: buf.append(x) random.shuffle(buf) while buf: yield buf.pop() def __len__(self): return len(self.dataset)
[docs]class IterableDatasetSampler( torch.utils.data.IterableDataset ): # pylint:disable=abstract-method """ This sampler can be used with a multi-worker distributed dataloader. All workers on all nodes get a copy of the IterableDataset but only yield samples according to the world size and their rank. """ def __init__(self, iterable_dataset, world_size=1, rank=0): self.iterable_dataset = iterable_dataset self.rank = rank self.world_size = world_size def __iter__(self): worker_info = torch.utils.data.get_worker_info() mod = self.world_size shift = self.rank if worker_info: mod *= worker_info.num_workers shift = self.rank * worker_info.num_workers + worker_info.id for i, element in enumerate(self.iterable_dataset): if (shift + i) % mod == 0: yield element
[docs]def to_cpu(tensor): """Move tensor from device to cpu.""" if isinstance(tensor, torch.Tensor): return tensor.to("cpu") if isinstance(tensor, (list, tuple)): return type(tensor)( t.to("cpu") if isinstance(t, torch.Tensor) else t for t in tensor ) if isinstance(tensor, dict): return { k: t.to("cpu") if isinstance(t, torch.Tensor) else t for k, t in tensor.items() } raise TypeError( "Invalid type. Expected Tensor or list/tuple of Tensors. " f"Got: {type(tensor)}" )
[docs]def to_tensor(value, device=None): """ If the provided value is a Python int or float, it converts them into PyTorch Tensors of type int32 and float32 respectively. Otherwise, it just returns the value. """ if isinstance(value, int): return torch.tensor(value, dtype=torch.int32, device=device) elif isinstance(value, float): return torch.tensor(value, dtype=torch.float32, device=device) elif isinstance(value, tuple): return tuple(map(to_tensor, value)) elif isinstance(value, list): return list(map(to_tensor, value)) else: return value
[docs]def setup_logging( chief_logging_level: str, streamer_logging_level: str, logging_dir: Optional[str] = None, model_dir: Optional[str] = None, ): """Configure default logging format.""" class CustomFormatter(logging.Formatter): """Cerebras Preferred Log Formatting.""" def __init__(self): ordinal = dist.get_ordinal() num_tasks = dist.num_tasks() - 1 if num_tasks > 1 and dist.is_streamer(): ordinal_msg = f"[{ordinal}/{num_tasks}]" else: ordinal_msg = "" fmt = f"%(asctime)s %(levelname)s: {ordinal_msg} %(message)s" super().__init__(fmt=fmt) self.info_formatter = None # Only enable shorter info logging depending on environment variable # This is so that we have the option to experiment with this in the future if "USE_SHORT_INFO_LOGGING" in os.environ: fmt = "{}%(message)s".format( f"{ordinal_msg}: " if ordinal > 0 else "" ) self.info_formatter = logging.Formatter(fmt) def format(self, record): if self.info_formatter and record.levelno == logging.INFO: return logging.Formatter.format(self.info_formatter, record) return super().format(record) def build_block_filter(handler_type: str): """Build a filter to block records from a specific handler.""" def block_filter(record): if hasattr(record, "block"): return record.block != handler_type return True return block_filter handlers = [] handler = logging.StreamHandler(sys.stdout) handler.setFormatter(CustomFormatter()) handler.addFilter(build_block_filter("console")) handlers.append(handler) if logging_dir: logging_file = os.path.join(logging_dir, f"run.log") handler = logging.FileHandler(logging_file) handler.setFormatter(CustomFormatter()) handler.addFilter(build_block_filter("file")) handlers.append(handler) # set up run log symlink symlink_dir = Path(model_dir) if model_dir else Path(logging_dir) run_log_symlink = symlink_dir / "latest_run.log" create_symlink( run_log_symlink, Path(logging_file).relative_to(symlink_dir) ) def get_level_name(level): if not isinstance(level, str): raise ValueError( f"Invalid logging level: `{level}`. " f"Expected a string or int level." ) try: level = int(level) except ValueError: level = level.upper() # Custom levels defined by cerebras.appliance if level == "TRACE": level = logging.DEBUG - 5 elif level == "VERBOSE": level = logging.INFO - 5 else: if ( isinstance(level, str) and level not in logging._nameToLevel # pylint: disable=W0212 ): # pylint: disable=protected-access raise ValueError( f"Invalid logging level: `{level}`. Expected one of " f"{list(logging._nameToLevel.keys())}." ) level = logging.getLevelName(level) return level if dist.is_master_ordinal(): level = get_level_name(chief_logging_level or "info") else: level = get_level_name(streamer_logging_level or "error") # Remove any handlers that may have been inadvertently set before logging.getLogger().handlers.clear() logging.basicConfig(level=level, handlers=handlers) setup_logging_excepthook()
[docs]@call_once() def setup_logging_excepthook(): """Setup a logging hook that runs whenever an exception is raised that catches and logs the exception to ensure that the full traceback is printed in the log file. """ original_hook = sys.excepthook def cerebras_logging_hook(exc_type, exc_value, exc_traceback): """Pipe uncaught exceptions through logger.""" msg = "".join( traceback.format_exception(exc_type, exc_value, exc_traceback) ) # Block console logging to avoid duplicate messages since exceptions # are logged by python interpreter by default anyways. logging.error(f"Uncaught exception:\n{msg}", extra={"block": "console"}) # Run the original except hook which prints the exception to stderr original_hook(exc_type, exc_value, exc_traceback) sys.excepthook = cerebras_logging_hook
[docs]def setup_artifact_dir(model_dir: str, mode: str): """ Create a unique subdirectory for this run by generating a time stamp so that parallel runs using the same model_dir don't overwrite common files. """ def _create(): time_stamp = time.strftime("%Y%m%d_%H%M%S") artifact_dir = cerebras_logs_path / mode / time_stamp artifact_dir.mkdir(parents=True) return artifact_dir cerebras_logs_path = Path(model_dir) / "cerebras_logs" # CPU runs could potentially finish very fast, so back-to-back runs # may end up getting the same timestamp and we'd fail in creating # the duplicate directory. In case of directory already existing, # sleep for more than 1 second and try again. If we fail again, # then throw. try: artifact_dir = _create() except FileExistsError: time.sleep(1.5) try: artifact_dir = _create() except Exception as e: raise e from None # Create a symlink to the artifact_dir so that it's easy to find the latest run. # The symlink needs to be at the same level as the subdirectories. latest = cerebras_logs_path.joinpath("latest") # symlink to relative path create_symlink( latest, artifact_dir.relative_to(cerebras_logs_path), target_is_directory=True, ) return str(artifact_dir)
[docs]class SampleGenerator(object): """Iterator which returns multiple samples of a given input data. Can be used in place of a PyTorch `DataLoader` to generate synthetic data. Args: data: The data which should be returned at each iterator step. sample_count: The maximum number of `data` samples to be returned. """ def __init__(self, data, sample_count): self._data = data self._sample_count = sample_count self._count = 0 def __iter__(self): return SampleGenerator(self._data, self._sample_count) def __len__(self): return self._sample_count def __next__(self): return self.next()
[docs] def next(self): """Generate next data sample.""" if self._count >= self._sample_count: raise StopIteration self._count += 1 return self._data
[docs]class RunConfigParamsValidator: """Validate Run Configs.""" def __init__( self, extras: Optional[Callable[[], List[argparse.ArgumentParser]]] = None, ): with open( os.path.join( os.path.dirname(__file__), "schema/runconfig_schema.yaml" ), "r", ) as fin: self.runconfig_schema = yaml.safe_load(fin) if extras: for parser in extras(): for arg in parser._actions: self.runconfig_schema["properties"][arg.dest] = {}
[docs] def validate(self, config): """Validate params match existing schema.""" if "use_cs_grad_accum" in config: raise ValueError( f"use_cs_grad_accum is no longer a valid option. To control gradient accumulation " f"settings on CSX, set micro_batch_size: (\"auto\" | None) in the " f"train_input and/or eval_input section of the params yaml file." ) validate(instance=config, schema=self.runconfig_schema)
[docs]def get_checkpoints(model_dir: str) -> List[str]: """Gather checkpoints in a model directory.""" matches = [] for filename in os.listdir(model_dir): m = re.match(r"checkpoint_(\d+)\.mdl", filename) if m: matches.append(m) matches.sort(key=lambda x: int(x.group(1))) # Sort by index not lexically checkpoints = [os.path.join(model_dir, match.group()) for match in matches] return checkpoints
[docs]def load_from_checkpoint_file( checkpoint_path: str, check_compatibility: bool = True ) -> dict: """Loads state dict from checkpoint path and checks for version compatibilty.""" logging.info(f"Loading weights from checkpoint {checkpoint_path}") state_dict = cstorch.load(checkpoint_path) if check_compatibility: check_checkpoint_compatibility(state_dict) return state_dict
[docs]def check_checkpoint_compatibility(state_dict: Dict[str, Any]): """Checks that the checkpoint is compatible with the current version of modelzoo.""" import cerebras.modelzoo as modelzoo import cerebras.modelzoo.tools.convert_checkpoint as convert_ckpt if "__metadata__" in state_dict: # extract the last item in the list as this is the most recent metadata checkpoint_version = state_dict["__metadata__"][-1].get("version", "") if not checkpoint_version: return checkpoint_version = parse(checkpoint_version) if checkpoint_version.local is None: current_version = parse(cstorch.__version__) if ( checkpoint_version.major != current_version.major or checkpoint_version.minor != current_version.minor ): converter_path = os.path.relpath( convert_ckpt.__file__, os.path.dirname(modelzoo.__file__), ) warn( f"Checkpoint version may be incompatible with Modelzoo version. Got " f"checkpoint version {str(checkpoint_version)} but Modelzoo version " f"is {str(current_version)}. You may need to run {converter_path} on the " f"incompatible checkpoint." )